摘要: 基于嵌入式操作系統(tǒng)硬件抽象層理論,設(shè)計一種用于嵌入式操作系統(tǒng)內(nèi)核開發(fā)的通用硬件抽象層平臺。通用硬件抽象層能夠為嵌入式操作系統(tǒng)內(nèi)核的設(shè)計開發(fā)屏蔽硬件平臺的特性,提供統(tǒng)一的硬件相關(guān)的服務(wù)接口,可以使嵌入式操作系統(tǒng)內(nèi)核的設(shè)計開發(fā)不依賴于特定的硬件平臺,同時開發(fā)的嵌入式操作系統(tǒng)內(nèi)核具有更強的可移植性。
關(guān)鍵詞: 嵌入式操作系統(tǒng) 通用硬件抽象層(HAL) BSP V開發(fā)模式
引言
為了便于操作系統(tǒng)在不同硬件結(jié)構(gòu)上進行移植,美國微軟公司首先提出了將底層與硬件相關(guān)的部分單獨設(shè)計成硬件抽象層美國微軟公司提出了將操作系統(tǒng)底層與硬件相關(guān)的部分單獨設(shè)計成硬件抽象層HAL(Hardware Abstraction Layer)的思想。硬件抽象層的引入大大推動了嵌入式操作系統(tǒng)的通用程度,為嵌入式操作系統(tǒng)的廣泛應(yīng)用提供了可能。然而,目前BSP形式的硬件抽象層僅僅能夠解決有限的幾種操作系統(tǒng)在同樣有限的BSP所支持的硬件平臺上的移植,而對絕大多數(shù)需要根據(jù)不同嵌入式應(yīng)用而專門定制的嵌入式操作系統(tǒng)來說能起的作用則非常有限。
1 硬件抽象層原理
1.1 硬件抽象層概念
嵌入式系統(tǒng)是一類特殊的計算機系統(tǒng)。它自底向上包括3個主要部分:硬件環(huán)境、嵌入式操作系統(tǒng)和嵌入式應(yīng)用程序。硬件環(huán)境是整個嵌入式操作系統(tǒng)和應(yīng)用程序運行的硬件平臺,不同的應(yīng)用通常有不同的硬件環(huán)境;因此如何有效地使嵌入式操作應(yīng)用于各種不同的應(yīng)用環(huán)境,是嵌入式操作系統(tǒng)發(fā)展中所必須解決的關(guān)鍵問題。
硬件抽象層通過硬件抽象層接口向操作系統(tǒng)以及應(yīng)用程序提供對硬件進行抽象后的服務(wù)。當(dāng)操作系統(tǒng)或應(yīng)用程序使用硬件抽象層API進行設(shè)計時,只要硬件抽象層API能夠在下層硬件平臺上實現(xiàn),那么操作系統(tǒng)和應(yīng)用程序的代碼就可以移植。
這樣,原先嵌入式系統(tǒng)的3層結(jié)構(gòu)逐步演化為一種4層結(jié)構(gòu)。圖1顯示了引入硬件抽象層后的嵌入式系統(tǒng)的結(jié)構(gòu)。
在整個嵌入式系統(tǒng)設(shè)計過程中,硬件抽象層同樣發(fā)揮著不可替代的作用。傳統(tǒng)的設(shè)計流程是采用瀑布式設(shè)計開發(fā)過程,首先是硬件平臺的制作和調(diào)試,而后是在已經(jīng)定型的硬件平臺的基礎(chǔ)上再進行軟件設(shè)計。由于硬件和軟件的設(shè)計過程是串行的,因此需要很長的設(shè)計周期;而硬件抽象層能夠使軟件設(shè)計在硬件設(shè)計結(jié)束前開始進行,使整個嵌入式系統(tǒng)的設(shè)計過程成為軟硬件設(shè)計并行的V模式開發(fā)過程,如圖2所示。這樣兩者的設(shè)計過程大致是同時進行的或是并發(fā)的,縮短了整個設(shè)計周期。
1.2 BSP分析
作為硬件抽象層的一種實現(xiàn),板級支持包BSP(Board Support Package)是現(xiàn)有的大多數(shù)商用嵌入式操作系統(tǒng)實現(xiàn)可移植性所采用的一種方案。BSP隔離了所支持的嵌入式操作系統(tǒng)與底層硬件平臺之間的相關(guān)性,使嵌入式操作系統(tǒng)能夠通用于BSP所支持的硬件平臺,從而實現(xiàn)嵌入式操作系統(tǒng)的可移植性和跨平臺性,以及嵌入式操作系統(tǒng)的通用性、復(fù)用性。
然而現(xiàn)有應(yīng)用較為廣泛的BSP形式的硬件抽象層,完全是為了現(xiàn)有通用或商業(yè)嵌入式操作系統(tǒng)在不同硬件平臺間的移植而設(shè)計的,因此BSP形式的硬件抽象層與BSP所向上支持的嵌入式操作系統(tǒng)是緊密相關(guān)的。在同一種嵌入式微處理器的硬件平臺上支持不同嵌入式操作系統(tǒng)的BSP之間不僅從組成結(jié)構(gòu)、向操作系統(tǒng)內(nèi)核所提供的功能以及所定義的服務(wù)的接口都完全不同,因而一種嵌入式操作系統(tǒng)的BSP不可能用于其他嵌入式操作系統(tǒng)。這種硬件抽象層是一種封閉的專用硬件抽象層。因此,我們提出了為上層嵌入式操作系統(tǒng)內(nèi)核的開發(fā)和構(gòu)建提供一種開放、通用的硬件抽象層平臺,使得在某種硬件平臺上的嵌入式操作系統(tǒng)內(nèi)核的開發(fā)能夠在支持這種硬件平臺的硬件抽象層上進行。
2 通用硬件抽象層總體設(shè)計
2.1 通用硬件抽象層的功能結(jié)構(gòu)設(shè)計
通用硬件抽象層需要為上層操作系統(tǒng)內(nèi)核提供統(tǒng)一的硬件相關(guān)功能服務(wù);而嵌入式操作系統(tǒng)內(nèi)核主要的硬件相關(guān)部分包括系統(tǒng)啟動初始化、任務(wù)上下文管理、中斷異常管理以及時鐘管理。因此,通用硬件抽象層對嵌入式操作系統(tǒng)內(nèi)核所相關(guān)的硬件平臺的基本硬件組成部分進行抽象,提供嵌入式操作系統(tǒng)內(nèi)核硬件平臺的相關(guān)功能,并設(shè)計相應(yīng)的通用硬件抽象層API接口。通用硬件抽象層的總體功能結(jié)構(gòu)如圖3所示。
(1) 系統(tǒng)啟動初始化
啟動初始化功能為操作系統(tǒng)的啟動和運行提供了必要的軟硬件環(huán)境。啟動和初始化過程中,對硬件平臺的直接訪問包括對CPU內(nèi)核的寄存器的初始化設(shè)置,以及對于起系統(tǒng)控制作用的端口寄存器的設(shè)置。通過啟動初始化過程,為整個操作系統(tǒng)內(nèi)核的運行提供了必要的運行環(huán)境與基礎(chǔ),隔離了不同硬件平臺上嵌入式微處理器總線結(jié)構(gòu)、存儲系統(tǒng)結(jié)構(gòu)的差異。
(2) 任務(wù)上下文管理
任務(wù)上下文管理負(fù)責(zé)嵌入式操作系統(tǒng)內(nèi)核中任務(wù)管理部分中對任務(wù)寄存器上下文的創(chuàng)建、刪除以及切換等操作。任務(wù)的寄存器上下文是操作系統(tǒng)內(nèi)核所管理的任務(wù)的重要組成部分,是CPU內(nèi)核的寄存器中內(nèi)容的映像,因此上下文管理的實現(xiàn)依賴于CPU內(nèi)核中寄存器的組織,是與體系結(jié)構(gòu)密切相關(guān)的。通用硬件抽象層的任務(wù)上下文管理統(tǒng)一定義體系結(jié)構(gòu)中的寄存器上下文的保護格式,提供了任務(wù)管理對任務(wù)上下文的基本操作的API接口。
(3) 中斷異常管理
中斷異常管理是嵌入式操作系統(tǒng)內(nèi)核中的重要組成部分。中斷異常機制是操作系統(tǒng)內(nèi)核實現(xiàn)與外部設(shè)備通信、任務(wù)系統(tǒng)調(diào)用、進行出錯處理以及能夠?qū)崿F(xiàn)對任務(wù)的實時調(diào)度的重要手段。因此,硬件抽象層中斷系統(tǒng)的管理部分是整個硬件抽象層中的關(guān)鍵。
通用硬件抽象層中為中斷異常處理進行了必要的包裝,向嵌入式操作系統(tǒng)內(nèi)核屏蔽底層的中斷異常處理;同時,由于中斷管理必須涉及對中斷控制器的操作。因此,通用硬件抽象層的設(shè)計中,將中斷控制器控制的外設(shè)請求抽象成為統(tǒng)一的IRQ設(shè)備,嵌入式操作系統(tǒng)通過操作抽象IRQ設(shè)備來管理外設(shè)的中斷服務(wù)程序以及進行對中斷控制器的操作,從而為操作系統(tǒng)內(nèi)核屏蔽了中斷控制器的直接操作。
(4) 定時管理
定時管理負(fù)責(zé)為操作系統(tǒng)內(nèi)核中的時鐘滴答處理提供必要的定時機制,同時也為內(nèi)核之外的系統(tǒng)功能提供定時服務(wù),如TCP/IP協(xié)議棧等。操作系統(tǒng)內(nèi)核通過時鐘滴答處理來執(zhí)行重要的定時任務(wù)(如任務(wù)時間的分配、任務(wù)運行時間統(tǒng)計、任務(wù)定時等待更新等),因此定時功能是硬件抽象層需要為操作系統(tǒng)內(nèi)核提供的最為基本和重要的功能之一。
通用硬件抽象層根據(jù)對硬件定時器的抽象為操作系統(tǒng)內(nèi)核提供統(tǒng)一的抽象定時器設(shè)備,并且對定時中斷服務(wù)程序進行了包裝,從而使嵌入式操作系統(tǒng)內(nèi)核直接面對的是統(tǒng)一、通用的抽象定時器設(shè)備,通過對抽象定時器的操作來實現(xiàn)定時服務(wù),而不必直接操作硬件定時器。
2.2 通用硬件抽象層的層次結(jié)構(gòu)設(shè)計
通用硬件抽象層的設(shè)計是為在各種不同硬件平臺上的嵌入式操作系統(tǒng)內(nèi)核的開發(fā)提供統(tǒng)一的硬件平臺相關(guān)的功能,因此這就要求硬件抽象層本身能夠易于擴展和移植到不同的硬件平臺之上,才能為這種硬件平臺上嵌入式操作系統(tǒng)內(nèi)核的開發(fā)提供支持。與硬件平臺相關(guān)的軟件分為體系結(jié)構(gòu)相關(guān)以及外圍端口寄存器操作相關(guān)部分。體系結(jié)構(gòu)相關(guān)軟件部分能夠用于與CPU內(nèi)核體系結(jié)構(gòu)兼容的不同嵌入式微處理器上,而對外圍端口寄存器的操作,則每種嵌入式微處理器都不同。因此,通用硬件抽象層功能的實現(xiàn)設(shè)計成為圖4所示的3個層次的結(jié)構(gòu):通用層、體系結(jié)構(gòu)層以及外圍層。通過這3個實現(xiàn)層次的劃分盡可能地實現(xiàn)代碼的可復(fù)用性。
(1) 通用層
通用層是以C語言編寫的、不涉及體系結(jié)構(gòu)及外圍端口寄存器具體操作的、能夠通用于各種硬件平臺的一層。通用層內(nèi)包括: 對統(tǒng)一的與編譯器無關(guān)的數(shù)據(jù)類型、抽象設(shè)備的數(shù)據(jù)結(jié)構(gòu)定義,以及提供給嵌入式操作系統(tǒng)內(nèi)核的對抽象設(shè)備的各種統(tǒng)一的操作服務(wù)的接口通用的實現(xiàn)部分。
通用層中抽象設(shè)備操作的實現(xiàn)中需要涉及的對CPU內(nèi)核寄存器的操作以及對外圍I/O端口寄存器的操作,是通過調(diào)用體系結(jié)構(gòu)層以及外圍層中統(tǒng)一定義的接口進行的。當(dāng)擴展或移植到其他硬件平臺上時,上層無須修改,而只須進行下層替換。
(2) 體系結(jié)構(gòu)層
針對各種嵌入式微處理器CPU內(nèi)核的體系結(jié)構(gòu),體系結(jié)構(gòu)層需要分別設(shè)計實現(xiàn)。體系結(jié)構(gòu)層中對體系結(jié)構(gòu)相關(guān)的數(shù)據(jù)類型以及數(shù)據(jù)結(jié)構(gòu)進行定義,包括寄存器上下文保存格式的定義以及對中斷異常向量起始地址、各種異常和中斷處理的入口偏移等,并負(fù)責(zé)通用硬件抽象層功能中體系結(jié)構(gòu)相關(guān)部分的實現(xiàn)。實現(xiàn)的內(nèi)容主要是對CPU內(nèi)核中各個寄存器的訪問,對于中斷異常向量表的操作以及底層的中斷和異常處理。
體系結(jié)構(gòu)層的實現(xiàn)是按照上層規(guī)定的調(diào)用接口來進行的,因而針對不同的體系結(jié)構(gòu),上層通用層無須進行修改。體系結(jié)構(gòu)層中對有關(guān)I/O端口寄存器的操作通過對外圍層接口的調(diào)用來實現(xiàn)。
針對某種體系結(jié)構(gòu)設(shè)計實現(xiàn)的體系結(jié)構(gòu)層能夠通用于CPU內(nèi)核體系結(jié)構(gòu)兼容的嵌入式微處理器的硬件平臺上,從而易于硬件抽象層在體系結(jié)構(gòu)兼容的嵌入式微處理器硬件平臺上的擴展和移植。
(3) 外圍層
外圍層是針對各種嵌入式微處理器而分別設(shè)計實現(xiàn)的。外圍層主要包括對外圍I/O接口和設(shè)備屬性的定義(包括中斷控制器連接的外設(shè)個數(shù)、定時器個數(shù)等),并且負(fù)責(zé)對各個外圍I/O設(shè)備端口寄存器的訪問操作。外圍層的實現(xiàn)需要根據(jù)上層定義的接口進行。
通用硬件抽象層的外圍層必須提供對存儲控制、總線控制、中斷控制器、定時器控制器、UART等基本I/O接口和設(shè)備的I/O端口寄存器的訪問功能。外圍層是與各種嵌入式微處理器一一對應(yīng)的,在采用不同的嵌入式微處理器的硬件平臺之間,外圍層是無法通用的。因此針對新的嵌入式微處理器的通用硬件抽象層的擴展或移植,外圍層都需要重新設(shè)計實現(xiàn)。
(4) 層次間接口的設(shè)計
通用硬件抽象層除了為嵌入式操作系統(tǒng)內(nèi)核提供統(tǒng)一的功能服務(wù)接口外,為了便于擴展和移植到其他硬件平臺,還在各層的調(diào)用之間設(shè)計了統(tǒng)一的調(diào)用接口。下層的功能實現(xiàn)需要按照與上層確定的接口規(guī)范來進行。其中某些上下層之間的接口,尤其是外圍層與上層之間的接口是使用宏定義的方式進行的。宏定義在預(yù)編譯時進行替換,沒有執(zhí)行時的性能損失。相反,對于底層的操作直接使用宏定義能夠提高執(zhí)行效率,尤其對外圍端口寄存器的操作,由于操作本身的執(zhí)行時間短,而一般函數(shù)調(diào)用則需要返回地址、參數(shù)壓棧等過程。這些開銷可能超過這些I/O端口寄存器的訪問時間,使用宏定義則沒有調(diào)用開銷,從而能夠直接實現(xiàn)接口對底層端口寄存器的訪問而不損失操作的效率。