今年,我們將看到更多公司和企業(yè)開始結合各種新興信息技術,如AI、區(qū)塊鏈等技術趨勢。當越來越多的創(chuàng)新公司這樣做時,就將經(jīng)歷格式塔轉變并從不同的角度看待他們的公司。那些成功遵循這條道路的組織將轉變?yōu)閿?shù)據(jù)組織。Gartner建議數(shù)據(jù)和分析領導者與高級業(yè)務負責人討論他們的關鍵業(yè)務優(yōu)先級,并探索如何針對以下10個主要趨勢去實現(xiàn)這些優(yōu)先級策略布局。
增強分析
數(shù)據(jù)分析的下一階段是數(shù)據(jù)增強分析,為分析計劃帶來自動化和新的程度的洞察力。
數(shù)據(jù)分析的下一階段的根本性轉變已經(jīng)開始了。就像第二波自助商業(yè)智能破壞了第一波傳統(tǒng)商務智能,第三波增強分析技術將再次改變游戲規(guī)則。早期采用增強分析技術的用戶,以前所未有的速度洞察力和增強的競爭優(yōu)勢。
增強的分析應用程序通過無偏差的正確準備的數(shù)據(jù)在右手中提供了驚人的結果。由于自動化分析依賴于統(tǒng)計技術,因此不足以代表業(yè)務流程的不準確,有偏差或質量差的數(shù)據(jù)將提供低質量的結果。
增強數(shù)據(jù)管理
隨著以云計算,大數(shù)據(jù),移動和社交為主要特征的第三平臺的發(fā)展,數(shù)據(jù)正在變成企業(yè)的核心驅動力,企業(yè)對于數(shù)據(jù)的使用成為其競爭力的核心組成部分。所以企業(yè)中產(chǎn)生了越來越多生產(chǎn)數(shù)據(jù)的拷貝用于備份/恢復,開發(fā)測試,統(tǒng)計分析,準業(yè)務平臺搭建,數(shù)據(jù)恢復有效性驗證等目的。
在當前產(chǎn)業(yè)環(huán)境下,大量行業(yè)用戶都已將核心業(yè)務遷移到自動化系統(tǒng),自動化系統(tǒng)的運行往往需要在業(yè)務系統(tǒng)中抽取數(shù)據(jù),這勢必會耗費業(yè)務系統(tǒng)的資源,對業(yè)務系統(tǒng)的效率、穩(wěn)定性造成極大影響。而增強數(shù)據(jù)管理通過對數(shù)據(jù)管理流程的重塑,實現(xiàn)了簡化數(shù)據(jù)使用、節(jié)約存儲空間、增強數(shù)據(jù)管理這幾大目標,在降低對業(yè)務系統(tǒng)壓力的同時,實現(xiàn)更敏捷的數(shù)據(jù)使用。
持續(xù)智能
來自所有數(shù)據(jù)的持續(xù)智能不是描述實時,速度或吞吐量的另一個短語。它是關于從所有數(shù)據(jù)中獲得連續(xù)業(yè)務價值的無摩擦循環(huán)時間。它是一種現(xiàn)代機器驅動的分析方法,無論有多少數(shù)據(jù)源或數(shù)量多大,您都可以快速獲取所有數(shù)據(jù)并加速所需的分析。它不是一次這樣做,而是讓機器自動化,因此它是連續(xù)的,無摩擦的。
通過使用各種技巧和工具,有很多方法可以快速進行分析。但是,如果它引導您進入一個新的思維鏈,需要一直回到加載更多數(shù)據(jù),建模,集成它并在每次業(yè)務出現(xiàn)新問題時調整儀表板。
現(xiàn)在,人工智能驅動的分析已經(jīng)通過應用當今數(shù)據(jù)處理平臺的巨大力量來自動解釋和協(xié)調來自不同來源的數(shù)據(jù)?,F(xiàn)在,任何人都可以將AI驅動的分析系統(tǒng)指向復雜的數(shù)據(jù)源進行推斷和協(xié)調,系統(tǒng)可以完成工作并立即向業(yè)務發(fā)送持續(xù)的視覺洞察。業(yè)務決策的數(shù)據(jù)變得持續(xù)。
可解釋的AI
人工智能出現(xiàn)以后,似乎正在逐步滲透到我們生活中的每個角落,其中不乏它為我們做出了一些非常重要的決定,比如,身體里的腫瘤是不是已經(jīng)發(fā)生癌變;是否應該同意或拒絕保險索賠;旅客是不是應該被批準通過機場安檢,甚至是否授權導彈發(fā)射以及是否批準自動駕駛汽車的制動,等等。
最重要的是,這顯然意味著應該提供關于如何獲得模型的響應的見解。直接的后果是,由于易于解釋,將可能方法的范圍縮小到最簡單的方法,除非我們找到方法將上下文添加到最先進算法的預測中。更何況,這種趨勢更多是因為監(jiān)管約束的強化而不是緩慢的。
圖形分析
圖形分析是一個快速發(fā)展的研究領域,其中圖形理論,統(tǒng)計和數(shù)據(jù)庫技術的組合應用于圖形結構數(shù)據(jù)的建模,存儲,檢索和性能分析。這些技術使研究人員能夠理解網(wǎng)絡的結構及其在不同條件下的變化,找到滿足不同約束的實體對之間的路徑,識別圖中的簇或緊密交互的子組,或查找與給定模式類似的子圖。
對于這些和許多其他任務,重要的是將一個數(shù)據(jù)視為表示對象和表示它們之間關系的對象和邊的節(jié)點或頂點的圖(網(wǎng)絡)。對于諸如傳感器網(wǎng)絡的許多應用領域,圖形可能很大并且具有十億個節(jié)點和邊緣。
可以基于邊緣是否具有取向來定向或不定向圖形。如果每對頂點通過路徑連接,則連接無向圖。具有與每個邊相關聯(lián)的權重的圖被稱為加權圖。用于網(wǎng)絡分析,基因組學,社交網(wǎng)絡分析和其他領域的大規(guī)模圖形處理的計算要求需要強大且高效的計算性能,只有加速器才能提供。
數(shù)據(jù)結構/數(shù)據(jù)網(wǎng)格
數(shù)據(jù)網(wǎng)格是一種架構和一系列數(shù)據(jù)服務,可以為內部環(huán)境和多云環(huán)境中的多種端點提供一致統(tǒng)一的功能。它可簡化并集成云端和內部環(huán)境的數(shù)據(jù)管理,有助于加快數(shù)字化轉型的步伐。它提供一致統(tǒng)一的集成混合云數(shù)據(jù)服務,用于改善數(shù)據(jù)可見性和洞察力、據(jù)訪問和控制,以及數(shù)據(jù)保護和安全。
面對巨大的壓力,IT主管們迫切需要在有限的時間內,運用有限的技能和預算駕馭當今的海量數(shù)據(jù),并利用這些數(shù)據(jù)為整個企業(yè)創(chuàng)造新的價值。與此同時,數(shù)據(jù)不再是隱藏在防火墻之后的加密設備上,而是越來越呈現(xiàn)分布式、動態(tài)性和多樣化的特點,而且數(shù)據(jù)量驚人,管理起來極為困難。
數(shù)據(jù)網(wǎng)格最終幫助企業(yè)釋放數(shù)據(jù)潛能,滿足業(yè)務需求并贏得競爭優(yōu)勢。它可以幫助IT部門更充分地發(fā)揮混合云的無限潛能,構建下一代數(shù)據(jù)中心并通過數(shù)據(jù)管理打造現(xiàn)代化的存儲。
NLP/會話分析
NLP是計算機以一種聰明而有用的方式分析,理解和從人類語言中獲取意義的一種方式。通過利用NLP,開發(fā)者可以組織和構建知識來執(zhí)行自動摘要,翻譯,命名實體識別,關系提取,情感分析,語音識別和話題分割等任務。
目前NLP的方法是基于深度學習,這是一種AI,它檢查和使用數(shù)據(jù)中的模式來改善程序的理解。深度學習模型需要大量的標記數(shù)據(jù)來訓練和識別相關的相關性,匯集這種大數(shù)據(jù)集是當前NLP的主要障礙之一。
NLP算法通?;跈C器學習算法。NLP可以依靠機器學習來自動學習這些規(guī)則,而不是手工編碼大量的規(guī)則集,通過分析一系列的例子(如,一個大的數(shù)據(jù)庫,像一本書,直到一堆句子的集合),并且做一個靜態(tài)的推論。一般來說,分析的數(shù)據(jù)越多,模型越精確。社交媒體分析是NLP使用的一個很好的例子。品牌在線跟蹤對話以了解客戶的意見,并洞悉用戶行為。
區(qū)塊鏈
區(qū)塊鏈與往年的不同之處在于,2019年我們將看到第一批真正的企業(yè)應用程序正在使用中。不是在談論開發(fā)分散式應用程序的各種區(qū)塊鏈初創(chuàng)公司,也不是在談論概念證明。在2019年,將看到大公司使用區(qū)塊鏈來改善行業(yè)協(xié)作。
區(qū)塊鏈的用戶數(shù)據(jù)隱私保護是一個新方向,接下來預計會看到越來越多的創(chuàng)業(yè)者和密碼學專家加入了這個行業(yè),投入大量資源進行研究?,F(xiàn)在這個方向已經(jīng)非常明確,通過加密算法保護用戶隱私數(shù)據(jù),通過區(qū)塊鏈激勵機制在機構和用戶之間分配價值,這是區(qū)塊鏈的優(yōu)勢所在。
商業(yè)AI和ML
商業(yè)供應商現(xiàn)在已經(jīng)在開源生態(tài)系統(tǒng)中構建了連接器,它們提供了擴展AI和ML所需的企業(yè)功能,例如項目和模型管理、循環(huán)利用、透明度提升,為數(shù)據(jù)以及開源技術缺乏的平臺提供凝聚力和集成。
到2022年,75%利用AI和ML技術的新終端用戶解決方案將采用商業(yè)解決方案而非開源平臺構建。
持久性內存服務器
持久性內存非常適合需要頻繁訪問大型復雜數(shù)據(jù)集的環(huán)境。持久存儲器是內存/存儲層次結構的新增功能,可彌補DRAM和存儲之間的差距,通過提供更靠近處理器的非易失性,低延遲存儲器,實現(xiàn)更大的數(shù)據(jù)管理靈活性。因為它駐留在DRAM總線上,所以持久存儲器可以提供對關鍵數(shù)據(jù)的超快速DRAM訪問。將傳統(tǒng)存儲的數(shù)據(jù)可靠性與超低延遲和高帶寬相結合,使設計人員能夠以全新的方式優(yōu)化系統(tǒng)并管理數(shù)據(jù)。
持久性內存非常適合需要頻繁訪問大型復雜數(shù)據(jù)集的環(huán)境,以及對因電源故障或系統(tǒng)崩潰導致的停機時間敏感的環(huán)境。應用程序包括大數(shù)據(jù)分析,存儲設備,RAID緩存,內存數(shù)據(jù)庫,存儲索引的元數(shù)據(jù)服務器以及在線事務處理。
隨著我們進入到未來,存儲數(shù)據(jù)這個基本概念將從鐵磁材料顆粒翻轉極性變成可直接尋址的異常小的硅片層,可以快速操作和讀取。由于硬件在變化,我們使用硬件的方式也應該隨之變化。
結尾
2019年將成為真理年。不僅從區(qū)塊鏈的角度來看,它為行業(yè)合作伙伴提供了單一版本的事實,而且還提供了物聯(lián)網(wǎng)安全性以及政府和商業(yè)組織之間激烈的軍備競賽??偠灾斘覀?yōu)橐詳?shù)據(jù)為中心的第三個十年做準備時,這將是一個非常激動人心的一年。
今天的大數(shù)據(jù)分析市場與幾年前的市場截然不同,正是由于海量數(shù)據(jù)的暴增,未來十年,全球各行各業(yè)都將發(fā)生變革、創(chuàng)新和顛覆。
聲明:本文為轉載類文章,如涉及版權問題,請及時聯(lián)系我們刪除(QQ: 2737591964),不便之處,敬請諒解!