無人駕駛面臨規(guī)劃控制和傳感器價(jià)格高兩大問題

時(shí)間:2018-06-11

來源:網(wǎng)絡(luò)轉(zhuǎn)載

導(dǎo)語:當(dāng)我們還在感慨駕駛是一件費(fèi)心費(fèi)力的事情時(shí),無人駕駛技術(shù)的進(jìn)步已經(jīng)逐步開始了解放我們的雙手到大腦的發(fā)展,在O'Reilly和Intel人工智能2018北京大會(huì)上,營(yíng)長(zhǎng)與前百度硅谷研發(fā)中心創(chuàng)始核心成員李力耘博士聊了聊,李力耘表示目前無人駕駛技術(shù)上最亟待解決的技術(shù)是傳感器的能力跟它的價(jià)值的平衡、無人駕駛的規(guī)劃控制兩大問題。

【無人駕駛面臨規(guī)劃控制和傳感器價(jià)格高兩大問題】

導(dǎo)讀:目前無人駕駛技術(shù)上最亟待解決的技術(shù)是傳感器的能力跟它的價(jià)值的平衡、無人駕駛的規(guī)劃控制兩大問題。

當(dāng)我們還在感慨駕駛是一件費(fèi)心費(fèi)力的事情時(shí),無人駕駛技術(shù)的進(jìn)步已經(jīng)逐步開始了解放我們的雙手到大腦的發(fā)展,在O'Reilly和Intel人工智能2018北京大會(huì)上,營(yíng)長(zhǎng)與前百度硅谷研發(fā)中心創(chuàng)始核心成員李力耘博士聊了聊,李力耘表示目前無人駕駛技術(shù)上最亟待解決的技術(shù)是傳感器的能力跟它的價(jià)值的平衡、無人駕駛的規(guī)劃控制兩大問題。

無人駕駛發(fā)展的價(jià)值

無人駕駛技術(shù)的發(fā)展,對(duì)人類來說不僅僅是解放了雙手,還解放了大腦。我們的注意力不需要集中在駕駛上,這將為經(jīng)濟(jì)效益和社會(huì)效益帶來極大進(jìn)步。

無疑在北京和美國(guó)硅谷這種交通環(huán)境下,開車對(duì)我們來說并不是一種享受,它需要花費(fèi)很多的時(shí)間和精力,如果無人駕駛技術(shù)得到普及,可以把開車的時(shí)間解放出來,可以在車上查查郵件,看看新聞,甚至休息一下。另外,無人駕駛對(duì)經(jīng)濟(jì)的生態(tài)也會(huì)帶來一些變化,例如無人產(chǎn)業(yè)鏈或許就會(huì)改變商圈的選址。

數(shù)據(jù)顯示,人類開車大概每百萬公里的量級(jí)就會(huì)出現(xiàn)一次致命事故,無人駕駛發(fā)展至今,已經(jīng)行駛上千萬公里,發(fā)生了Uber的事故,相對(duì)來講,無人駕駛反倒是比人類駕駛安全系數(shù)更高。

無人駕駛?cè)〈緳C(jī)是一個(gè)漫長(zhǎng)的過程,可以看到,無人駕駛的測(cè)試是配備有司機(jī)的。如果無人駕駛技術(shù)得到普及,可以做整體全局上的智能城市的優(yōu)化,比如說大家可以有一個(gè)集中的調(diào)度的系統(tǒng),來優(yōu)化去同樣目的地人群,并提倡共享出行。

無人駕駛技術(shù)不僅僅解放了人類的精力和效率,最終的方向是建立智慧城市,智能交通的規(guī)劃,隨著這種統(tǒng)籌的發(fā)展,也許司機(jī)的比例逐漸減少,但最終取代司機(jī)的這一天,可能還有很長(zhǎng)的路要走。

國(guó)內(nèi)的測(cè)試環(huán)境更具挑戰(zhàn)

李力耘認(rèn)為,美國(guó)現(xiàn)代的無人駕駛技術(shù),還是遠(yuǎn)遠(yuǎn)領(lǐng)先于國(guó)內(nèi)的,從加州交管局的匯報(bào)的數(shù)據(jù)可以看到,國(guó)內(nèi)頂尖的Apollo與GoogleWaymo和Uber相比還是有一定差距的。

另外一點(diǎn),無人駕駛的人才在美國(guó)硅谷比較多,這是一個(gè)非常重要的一個(gè)差別,GoogleWaymo、Uber等都積累了很多無人駕駛的人才,國(guó)內(nèi)在這方面仍處于剛剛開始積累的階段。

國(guó)內(nèi)的測(cè)試環(huán)境更具有挑戰(zhàn),政府提供了很多的支持,無論是交管法規(guī),還是技術(shù)設(shè)施,都給予很多的支持,加上中國(guó)人對(duì)新事物的接受程度很快,像這些移動(dòng)支付,O2O這種都是美國(guó)沒見過的模式,國(guó)內(nèi)很快接受了,在這方面有很大的優(yōu)勢(shì)。

所以,在這種落地跟轉(zhuǎn)化上中國(guó)的優(yōu)勢(shì)很大,美國(guó)是技術(shù)上的比中國(guó)積累的深厚,另外人才方面,隨著中國(guó)人才漸漸的積累和爆發(fā),最終差距不會(huì)很大。

亟待解決的兩大技術(shù)

無人駕駛技術(shù)目前最亟待解決的技術(shù)有兩個(gè)部分:

第一,是傳感器的能力跟它的價(jià)值的平衡問題

據(jù)法國(guó)權(quán)威市場(chǎng)分析機(jī)構(gòu)YoleDéveloppement的統(tǒng)計(jì),智能駕駛主要通過攝像頭(長(zhǎng)距攝像頭、環(huán)繞攝像頭和立體攝像頭)和雷達(dá)(超聲波雷達(dá)、毫米波雷達(dá)、激光雷達(dá))實(shí)現(xiàn)感知的;當(dāng)前最先進(jìn)的智能汽車采用了17個(gè)傳感器(僅指應(yīng)用于自動(dòng)駕駛功能),預(yù)計(jì)2030年將達(dá)到29個(gè)傳感器。

舉個(gè)例子來說,激光雷達(dá)技術(shù)并不是“原子彈科技”,這項(xiàng)技術(shù)只是需要更多的沉淀,更多的精力來把它做的更好、更精。從技術(shù)上來說是存在成本降低的可能性。

現(xiàn)在每一個(gè)激光雷達(dá)廠商都說,只要給我多大量,我就能把成本做下來,所以只要技術(shù)方案定下來,降成本是一定可以降的,它的更多挑戰(zhàn)是怎么把這個(gè)雷達(dá)給沉淀更加穩(wěn)定,更加精準(zhǔn)、更加適合無人車的使用。

第二,無人駕駛的規(guī)劃控制

無人駕駛技術(shù)在正常行駛的方面已經(jīng)解決的很好,但是遇到一些異常情況,如出現(xiàn)一些行人不守交規(guī),或者是一些極端情況的時(shí)候,我們?cè)趺窗验L(zhǎng)遠(yuǎn)的問題,通過算法處理好,這是一個(gè)挑戰(zhàn)。

或許無人駕駛測(cè)試幾百萬公里級(jí)別,才出現(xiàn)一次Uber事故的場(chǎng)景,無人車測(cè)試的時(shí)候也會(huì)盡量避免這樣的事情,而在這個(gè)領(lǐng)域里面,規(guī)劃控制和模擬器是可以發(fā)力的一個(gè)點(diǎn)。

用模擬器和人工智能去檢測(cè)一些車的極限能力,或者是在一些極端情況車輛的反應(yīng)情況,這些場(chǎng)景往往不太能通過采集數(shù)據(jù),或者通過正常的手段來進(jìn)行學(xué)習(xí)跟測(cè)試的。

對(duì)人工智能期待過高

很多人都覺得人工智能不夠“智能”,這是因?yàn)榇蠹覍?duì)人工智能的期待過高,從無人車的角度,人腦是一個(gè)神經(jīng)網(wǎng)絡(luò),是經(jīng)過了很多年迭代的,就是說你生下來的時(shí)候是一個(gè)設(shè)計(jì)好的網(wǎng)絡(luò),這個(gè)網(wǎng)絡(luò)叫做基因跟生物學(xué)上的大腦。

除此之外,比如說你長(zhǎng)到16歲開始開車,其實(shí)你的大腦的感知已經(jīng)訓(xùn)練了十幾年了,你對(duì)這個(gè)世界的理解,不是說像無人車這樣,弄很多圖片,然后訓(xùn)練,人的大腦的感知能力是非常強(qiáng)大,所以,人工智能要真的能達(dá)到這個(gè)人的感知能力,還有很長(zhǎng)的路要走。

人工智能現(xiàn)在隨著計(jì)算機(jī)視覺發(fā)展,在感知和預(yù)測(cè)上都有顯而易見的應(yīng)用,但是在決策規(guī)劃上,應(yīng)用并沒有這么直接。隨著人工智能的發(fā)展,決策規(guī)劃也已經(jīng)向有數(shù)據(jù)驅(qū)動(dòng)的方向開始轉(zhuǎn)變。

通過采集人開車的數(shù)據(jù),和機(jī)器開車數(shù)據(jù)的區(qū)別,來訓(xùn)練我們的算法。讓我們的算法開車越來越像人的行為,這是人工智能開始滲透到?jīng)Q策規(guī)劃的一個(gè)方向,未來有一天人工智能也會(huì)成為決策規(guī)劃上一個(gè)主流的算法。

各個(gè)城市關(guān)于無人駕駛的法規(guī)剛剛出臺(tái),目前還沒有那么健全,但這也是擁抱無人駕駛技術(shù)變化的一個(gè)很好的體現(xiàn)。另外在這些法規(guī)的督促下,更合法又有效去的去提高整個(gè)系統(tǒng)的穩(wěn)定性和能力,然后把這個(gè)系統(tǒng)做的更好。

很多人將無人駕駛技術(shù)發(fā)展看作是技術(shù)與法律的博弈,其實(shí)這更像是一個(gè)互相發(fā)展、互相適應(yīng)的過程。

中傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:

凡本網(wǎng)注明[來源:中國(guó)傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國(guó)傳動(dòng)網(wǎng)(m.u63ivq3.com)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來源“中國(guó)傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

關(guān)注伺服與運(yùn)動(dòng)控制公眾號(hào)獲取更多資訊

關(guān)注直驅(qū)與傳動(dòng)公眾號(hào)獲取更多資訊

關(guān)注中國(guó)傳動(dòng)網(wǎng)公眾號(hào)獲取更多資訊

最新新聞
查看更多資訊

娓娓工業(yè)

廣州金升陽科技有限公司

熱搜詞
  • 運(yùn)動(dòng)控制
  • 伺服系統(tǒng)
  • 機(jī)器視覺
  • 機(jī)械傳動(dòng)
  • 編碼器
  • 直驅(qū)系統(tǒng)
  • 工業(yè)電源
  • 電力電子
  • 工業(yè)互聯(lián)
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機(jī)界面
  • PLC
  • 電氣聯(lián)接
  • 工業(yè)機(jī)器人
  • 低壓電器
  • 機(jī)柜
回頂部
點(diǎn)贊 0
取消 0