近年來(lái)消費(fèi)市場(chǎng)快速變動(dòng),對(duì)全球制造業(yè)帶來(lái)嚴(yán)峻挑戰(zhàn),導(dǎo)入智能化架構(gòu)成為業(yè)者永續(xù)經(jīng)營(yíng)的必要策略,而在新世代的制造系統(tǒng)中,工業(yè)物聯(lián)網(wǎng)不僅成為核心架構(gòu),更會(huì)與AI(人工智能)結(jié)合,落實(shí)智能化愿景。
1969年PLC問世后,自動(dòng)化技術(shù)在制造領(lǐng)域逐漸站穩(wěn)腳步,如今已是全球制造系統(tǒng)的核心架構(gòu),由于制造系統(tǒng)講究穩(wěn)定,因此對(duì)新技術(shù)、新架構(gòu)的接受速度向來(lái)緩慢,不過(guò)近年來(lái)消費(fèi)市場(chǎng)快速變動(dòng),對(duì)全球制造業(yè)帶來(lái)嚴(yán)峻挑戰(zhàn),導(dǎo)入智能化架構(gòu)成為業(yè)者永續(xù)經(jīng)營(yíng)的必要策略,而在新世代的制造系統(tǒng)中,工業(yè)物聯(lián)網(wǎng)不僅成為核心架構(gòu),更會(huì)與AI(人工智能)結(jié)合,落實(shí)智能化愿景。
所有場(chǎng)域應(yīng)用的物聯(lián)網(wǎng),其架構(gòu)都相同,都是由傳感器、通訊網(wǎng)絡(luò)與云端管理平臺(tái)所組成的3層架構(gòu),由傳感器擷取設(shè)備數(shù)據(jù),再經(jīng)由通訊網(wǎng)絡(luò)傳送到上層云端平臺(tái)儲(chǔ)存、運(yùn)算,最后再以分析出來(lái)的數(shù)據(jù)作為系統(tǒng)運(yùn)作的決策參考,而在整體架構(gòu)中,AI過(guò)去多被建置在上層的云端平臺(tái),透過(guò)強(qiáng)大的機(jī)器學(xué)習(xí)算法,分析由終端感測(cè)層傳回的海量數(shù)據(jù)。
不過(guò),機(jī)器學(xué)習(xí)算法需要一定的運(yùn)算時(shí)間,其目的也多在解決制造業(yè)類似像是制程排程優(yōu)化的長(zhǎng)時(shí)間問題,對(duì)于制程中會(huì)遇到的實(shí)時(shí)問題反應(yīng)與控制指令回饋會(huì)緩不濟(jì)急,近兩年邊緣運(yùn)算概念興起,成為工業(yè)物聯(lián)網(wǎng)的實(shí)時(shí)性問題的最佳答案。
上層AI多用于長(zhǎng)期規(guī)劃
邊緣運(yùn)算的做法是讓終端設(shè)備具有一定的運(yùn)算能力,具有邊緣運(yùn)算設(shè)計(jì)的工業(yè)物聯(lián)網(wǎng)架構(gòu),必須先建立起一套數(shù)據(jù)流模式,當(dāng)傳感器擷取到設(shè)備的狀態(tài)數(shù)據(jù)后,就將數(shù)據(jù)傳送到通訊層的網(wǎng)關(guān),網(wǎng)關(guān)再依照系統(tǒng)建構(gòu)時(shí)的設(shè)定讓數(shù)據(jù)分流,需要實(shí)時(shí)處理數(shù)據(jù)傳送到前端控制器,讓自動(dòng)化設(shè)備可以快速反應(yīng),需要儲(chǔ)存累績(jī)?yōu)殚L(zhǎng)期數(shù)據(jù)的數(shù)據(jù),則送往數(shù)據(jù)庫(kù)儲(chǔ)存,上層再透過(guò)運(yùn)算平臺(tái)分析出結(jié)果,提供管理者作為決策參考,因此現(xiàn)在完整的工業(yè)物聯(lián)網(wǎng),其AI會(huì)被分別設(shè)計(jì)在會(huì)有終端與云端兩部分,讓分布式與集中式運(yùn)算在架構(gòu)中并存,彼此各司所職。
再?gòu)脑O(shè)備供應(yīng)端在工業(yè)物聯(lián)網(wǎng)的研究議題來(lái)看,現(xiàn)在主要是集中在4個(gè)方向,包括生產(chǎn)系統(tǒng)、產(chǎn)品質(zhì)量、制程優(yōu)化與數(shù)字建模。在這4大方向中,各有其需要解決的問題,像是生產(chǎn)系統(tǒng)中,設(shè)備的狀態(tài)感測(cè)、監(jiān)控與預(yù)診,產(chǎn)品質(zhì)量的檢測(cè)、預(yù)測(cè),制程優(yōu)化的參數(shù)設(shè)定、能源運(yùn)用,數(shù)字建模的數(shù)字雙生平泰建立等,透過(guò)工業(yè)物聯(lián)網(wǎng)的數(shù)據(jù)擷取與分析,將可逐步解決這些問題,提升系統(tǒng)整體效能。
在工業(yè)物聯(lián)網(wǎng)中,AI主要用來(lái)做制程的優(yōu)化與長(zhǎng)期規(guī)畫等非實(shí)時(shí)性決策,例如現(xiàn)在消費(fèi)性市場(chǎng)的產(chǎn)品類別多樣,制程系統(tǒng)的換線將成為常態(tài),透過(guò)大數(shù)據(jù)與AI的運(yùn)算,就可盡量縮短換線生產(chǎn)的停機(jī)時(shí)間,讓排程優(yōu)化。
進(jìn)行產(chǎn)線排程時(shí),需從機(jī)器環(huán)境、制程加工特性與限制、排程目標(biāo),依據(jù)工作到達(dá)達(dá)生產(chǎn)現(xiàn)場(chǎng)的情況區(qū)分,可分靜態(tài)及動(dòng)態(tài)排程兩種,靜態(tài)排程是到達(dá)生產(chǎn)現(xiàn)場(chǎng)時(shí),其制造數(shù)目?固定且可一次完成的任務(wù)進(jìn)行排程,后續(xù)如果出現(xiàn)新工作,再并入下一次制程處理。動(dòng)態(tài)排程則是若制程連續(xù)、產(chǎn)品隨機(jī),而且數(shù)目不固定的到達(dá)生產(chǎn)現(xiàn)場(chǎng),須不斷的更新生?排程。
就上述兩種排程方式來(lái)看,靜態(tài)排程通常為少樣多樣方式,AI在其中要解決的問題,主要是透過(guò)深度學(xué)習(xí)算法分析各環(huán)節(jié)的時(shí)間與質(zhì)量,不斷的改進(jìn)工序,讓效能與質(zhì)量?jī)?yōu)化;動(dòng)態(tài)排程則用于少量多樣生產(chǎn),AI會(huì)針對(duì)不同產(chǎn)品的工序,建立起換線模式,有不同產(chǎn)品上線時(shí),即啟動(dòng)專屬換線模式,盡量縮短停機(jī)時(shí)間,同時(shí)讓產(chǎn)品維持固定質(zhì)量。
邊緣運(yùn)算效益可快速浮現(xiàn)
由于工業(yè)物聯(lián)網(wǎng)上層的AI建置,效益需要一段時(shí)間才浮現(xiàn),不會(huì)是立竿見影的發(fā)生,而且對(duì)制造業(yè)者來(lái)說(shuō)并非當(dāng)務(wù)之急,因此目前投入者大多為大型制造業(yè),中小規(guī)模的業(yè)者,則以底層的邊緣運(yùn)算為主。
目前中小企業(yè)的工業(yè)物聯(lián)網(wǎng)建置,制造設(shè)備的預(yù)知保養(yǎng)與制程檢測(cè)仍是兩大主要功能,由于設(shè)備的無(wú)預(yù)警停機(jī),將會(huì)造成整體產(chǎn)線停擺,輕則產(chǎn)在線的半成品報(bào)廢,重則交期延宕影響商譽(yù),設(shè)備保養(yǎng)過(guò)去多采人工記錄方式,人員再按照時(shí)間維護(hù),不過(guò)這種方式除了有可能因人員疏失或懈怠,未能定時(shí)作業(yè)外,設(shè)備也有可能在未達(dá)維護(hù)時(shí)間時(shí)故障。
工業(yè)物聯(lián)網(wǎng)中的設(shè)備預(yù)知保養(yǎng)可分兩類,一種是直接在管理系統(tǒng)上設(shè)計(jì)提醒功能,主動(dòng)告知相關(guān)人員維修時(shí)間,另一種則是由傳感器偵測(cè)設(shè)備狀態(tài),若是出現(xiàn)異常,AI則會(huì)依據(jù)出現(xiàn)的狀態(tài)頻率,判斷可能發(fā)生的情況,再做不同處理,例如傳感器發(fā)現(xiàn)馬達(dá)的震動(dòng),有可能是軸心歪斜,系統(tǒng)會(huì)依據(jù)震動(dòng)的大小與頻率判斷馬達(dá)現(xiàn)在的狀態(tài),如果有可能會(huì)立即損壞,就馬上告知設(shè)備維護(hù)人員停機(jī)更換,如果沒有立即危險(xiǎn),則會(huì)讓馬達(dá)持續(xù)運(yùn)作,并記錄該馬達(dá)的狀況,讓管理人員自行決定維護(hù)時(shí)間,讓產(chǎn)線可以維持穩(wěn)定的運(yùn)作效能。
邊緣運(yùn)算的另一種主要功能是制程檢測(cè),從目前AI的發(fā)展來(lái)看,圖像處理占有70%以上的應(yīng)用,在工業(yè)物聯(lián)網(wǎng)架構(gòu)中也是如此。過(guò)去制程中多靠人眼檢測(cè)產(chǎn)品質(zhì)量,由于人眼容易疲勞,隨著工作時(shí)間的拉長(zhǎng),檢測(cè)質(zhì)量會(huì)逐漸降低,再者,部分消費(fèi)性產(chǎn)品的體積越來(lái)越小,產(chǎn)線速度越來(lái)越快,人眼已難以負(fù)荷,現(xiàn)在已被取代機(jī)器視覺所取代。
現(xiàn)在的機(jī)器視覺判斷速度非???,且精準(zhǔn)度越來(lái)越高,不過(guò)其運(yùn)作模式仍是貼合大量制造的制程為設(shè)計(jì),其快速與精準(zhǔn)的辨識(shí),僅能適用于少數(shù)類型,在少量多樣或混線生產(chǎn)的制程中仍力有未逮,而AI則可讓機(jī)器視覺擁有學(xué)習(xí)能力,未來(lái)的設(shè)備將可透過(guò)算法自我學(xué)習(xí),遇到不一樣的產(chǎn)品種類或瑕疵時(shí),即可自主判斷,不必再由管理人員重新設(shè)定、調(diào)整判別模式。
感知運(yùn)算會(huì)是下一步
在現(xiàn)有的設(shè)備預(yù)診與制測(cè)檢測(cè)之后,制造系統(tǒng)的邊緣運(yùn)算接下來(lái)將會(huì)有那些重點(diǎn)應(yīng)用?易用性將會(huì)是下一個(gè)趨勢(shì),而要讓設(shè)備易用,感知會(huì)是系統(tǒng)的必要設(shè)計(jì)理念。
相對(duì)于現(xiàn)在的工業(yè)物聯(lián)網(wǎng)中,邊緣運(yùn)算只能找出系統(tǒng)問題,感知運(yùn)算則可找到問題的原因,并直接提出最佳解決方式,制造系統(tǒng)的智能化設(shè)計(jì),必須針對(duì)不同用戶提供適用功能,決策者、管理者、操作者所需的信息大不相同,第一線的設(shè)備作業(yè)者遇到問題時(shí),往往面臨極大的時(shí)間壓力,此時(shí)系統(tǒng)并不需要問題以外的信息,只需要系統(tǒng)直接告知問題所在,甚至提出可行的解決方式,像是設(shè)備故障,系統(tǒng)會(huì)直接在畫面顯示或以語(yǔ)音提示,告知操作人員先按下某個(gè)按鍵,讓系統(tǒng)先恢復(fù)安全狀態(tài),之后再提示緊急狀態(tài)的發(fā)生原因。這就是感知運(yùn)算最大的優(yōu)勢(shì)所在,隨著IT領(lǐng)域軟硬件技術(shù)提升與制造業(yè)對(duì)智能化概念的逐漸接受,感知運(yùn)算將成為制造業(yè)的應(yīng)用會(huì)越來(lái)越多。
觀察發(fā)展現(xiàn)況,工業(yè)4.0在制造業(yè)已是大勢(shì)所趨,無(wú)論是設(shè)備應(yīng)應(yīng)商或制造業(yè)者,導(dǎo)入工業(yè)物聯(lián)網(wǎng)的動(dòng)作也都轉(zhuǎn)趨積極,不過(guò)有成效者仍占少數(shù),之前研究機(jī)構(gòu)麥肯錫(McKinsey)就曾針對(duì)歐、美、日等地的制造大廠進(jìn)行調(diào)查,根據(jù)調(diào)查顯示,建置相關(guān)系統(tǒng)的企業(yè)中,僅有四成認(rèn)為有獲得成效或確實(shí)改善了制程,此一結(jié)果雖然不至于太慘,但與當(dāng)初預(yù)期仍有一段距離。
至于臺(tái)灣地區(qū)市場(chǎng),由于制造業(yè)族群分布零散,工業(yè)4.0要落實(shí)在不同產(chǎn)業(yè)中仍有困難,原因在于無(wú)論是技術(shù)成熟度、策略方針到問題痛點(diǎn),不同型態(tài)的制造業(yè),其差異都相當(dāng)大,因此制造業(yè)導(dǎo)入工業(yè)物聯(lián)網(wǎng)的第一步,就是先審視自己所處的位置,以找出最合適的解決方案。
業(yè)者指出,各族群制程系統(tǒng)的技術(shù)成熟度不同,對(duì)工業(yè)物聯(lián)網(wǎng)的功能需求差異也極大,例如傳產(chǎn)可能連第一步將設(shè)備連網(wǎng)的階段都還未達(dá)到,更遑論AI,但也有產(chǎn)業(yè)已在深入研究AI、機(jī)器學(xué)習(xí)等技術(shù)的深化應(yīng)用,讓設(shè)備自主優(yōu)化。
你在工業(yè)4.0的哪一階段?
至于制造業(yè)要審視本身在工業(yè)4.0中所占的位置,則可透過(guò)訊息物理系統(tǒng)(CyberPhysicsSystem)當(dāng)中的5C架構(gòu)來(lái)進(jìn)行評(píng)判標(biāo)準(zhǔn),5C標(biāo)準(zhǔn)非常適合用來(lái)檢視工業(yè)4.0技術(shù)的成熟度,并輔助企業(yè)審視各階段所需的代表性能力與技術(shù),順利導(dǎo)入工業(yè)物聯(lián)網(wǎng)。5C架構(gòu)從最底層初階技術(shù)至最高層高階應(yīng)用共可分為五個(gè)能力組成,分別是鏈接(Connect)、轉(zhuǎn)化(Covert)、虛擬(Cyber)、感知(Cognition)以及自我配置(Configure)。
第一階段的鏈接,最主要是整合OT與IT系統(tǒng),透過(guò)聯(lián)網(wǎng)技術(shù)讓機(jī)器與機(jī)器間能夠互相通訊、進(jìn)行串聯(lián)。其次是轉(zhuǎn)化,這階段是讓設(shè)備機(jī)臺(tái)在初步的連網(wǎng)后,將擷取到的信息轉(zhuǎn)換為具有分析價(jià)值的數(shù)據(jù)信息,例如設(shè)備的失效或良率的分析。其中,設(shè)備端點(diǎn)須具備分析、智能化的能力是這一階段中非常關(guān)鍵的能力。
在第三個(gè)階段虛擬中,則是強(qiáng)調(diào)虛擬化的數(shù)字雙生(DigitalTwins),在所有機(jī)臺(tái)都連網(wǎng)之后,形成另外一個(gè)虛擬、同步化的工廠運(yùn)行,而其數(shù)字工廠具備感知、預(yù)測(cè)能力,可預(yù)測(cè)「非計(jì)劃內(nèi)」的設(shè)備故障,當(dāng)故障訊息被數(shù)字工廠擷取后,更可以仿真接下來(lái)如何執(zhí)行優(yōu)化的重新排程,例如像日本近年就非常致力于推動(dòng)數(shù)字工廠的運(yùn)行。
至于第四層感知階段,主要?jiǎng)t是導(dǎo)入如機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等一系列的人工智能技術(shù),讓機(jī)器可自我學(xué)習(xí)、進(jìn)化,并從大數(shù)據(jù)分析中不斷進(jìn)行推算與仿真,進(jìn)而在設(shè)備端預(yù)防機(jī)器故障與良率不佳的狀況。
最后一個(gè)階段自我配置,則是能夠機(jī)器能夠藉由感知、學(xué)習(xí)的結(jié)果,以自主的方式改變機(jī)器設(shè)備的設(shè)定,就好比自動(dòng)駕駛的概念,利用系統(tǒng)對(duì)環(huán)境變化的判斷與分析自動(dòng)更改執(zhí)行命令。而工廠的機(jī)器同樣也能夠根據(jù)感測(cè)系統(tǒng)、訂單需求等的變化重新排程,訂立優(yōu)化的結(jié)果,這也是目前工業(yè)4.0追求的最高層級(jí)。
透過(guò)不同階段的認(rèn)知,制造業(yè)即可掌握目前自身系統(tǒng)所在的位置,并根據(jù)自身問題,向系統(tǒng)整合商提出功能需求,例如產(chǎn)品質(zhì)量不佳,就以圖像處理強(qiáng)化質(zhì)量控管;要提升效能,則可偵測(cè)設(shè)備的使用狀態(tài),提升OEE(整體設(shè)備效率),而這些功能都可透過(guò)簡(jiǎn)單的AI設(shè)置,加快效益的浮現(xiàn)速度。
談到AI,過(guò)去多認(rèn)為是遙不可及的概念,但其實(shí)AI可分為強(qiáng)AI與弱AI,在工業(yè)物聯(lián)網(wǎng)的邊緣運(yùn)算中,通常只需要用到有限效能的弱AI,就可有效提升效能,因此制造業(yè)者不必認(rèn)為太過(guò)遙遠(yuǎn)就一徑排斥,可與系統(tǒng)廠商溝通討論,先從影響不大、成本不高之處先行建置,再視成效決定下一步動(dòng)作,透過(guò)不斷的嘗試、修正與導(dǎo)入,企業(yè)就可在有限的成本與風(fēng)險(xiǎn)下逐步轉(zhuǎn)型,維持市場(chǎng)競(jìng)爭(zhēng)力。
聲明:本文為轉(zhuǎn)載類文章,如涉及版權(quán)問題,請(qǐng)及時(shí)聯(lián)系我們刪除(QQ:2737591964),不便之處,敬請(qǐng)諒解!