谷歌開(kāi)源AI能區(qū)分聲音 準(zhǔn)確率達(dá)92%

時(shí)間:2018-11-29

來(lái)源:網(wǎng)絡(luò)轉(zhuǎn)載

導(dǎo)語(yǔ):據(jù)VentureBeat報(bào)道,在語(yǔ)音嘈雜的環(huán)境中,要想分辨出有幾個(gè)人講話、在什么時(shí)間講話,對(duì)于機(jī)器來(lái)說(shuō)非常困難。但谷歌人工智能(AI)研究部門(mén)在語(yǔ)音識(shí)別方面取得了新進(jìn)展,能以92%的準(zhǔn)確率識(shí)別出每個(gè)人聲音的專(zhuān)屬模式。

【中國(guó)傳動(dòng)網(wǎng) 行業(yè)動(dòng)態(tài)】 據(jù)VentureBeat報(bào)道,在語(yǔ)音嘈雜的環(huán)境中,要想分辨出有幾個(gè)人講話、在什么時(shí)間講話,對(duì)于機(jī)器來(lái)說(shuō)非常困難。但谷歌人工智能(AI)研究部門(mén)在語(yǔ)音識(shí)別方面取得了新進(jìn)展,能以92%的準(zhǔn)確率識(shí)別出每個(gè)人聲音的專(zhuān)屬模式。

谷歌AI研究部門(mén)在最新名為《FullySupervisedSpeakerDiarization》的論文和相關(guān)博客文章中,研究人員描述了一種新的AI系統(tǒng),它“能以一種更有效的方式識(shí)別聲音”。

這套系統(tǒng)涉及到Speakerdiarization任務(wù),即需要標(biāo)注出“誰(shuí)”從“什么時(shí)候”到“什么時(shí)候”在說(shuō)話,將語(yǔ)音樣本分割成獨(dú)特的、同構(gòu)片段的過(guò)程。強(qiáng)大的AI系統(tǒng)必須能夠?qū)⑿碌难葜v者發(fā)音與它以前從未遇到過(guò)的語(yǔ)音片段關(guān)聯(lián)起來(lái)。

這篇論文的作者聲稱(chēng),核心算法已經(jīng)可在Github上的開(kāi)源軟件中可用,它實(shí)現(xiàn)了一個(gè)在線二值化錯(cuò)誤率(DER),在NISTSRE2000CALLHOME基準(zhǔn)上是7.6%,這對(duì)于實(shí)時(shí)應(yīng)用來(lái)說(shuō)已經(jīng)足夠低了,而谷歌之前使用的方法DER為8.8%。

谷歌研究人員的新方法是通過(guò)遞歸神經(jīng)網(wǎng)絡(luò)(RNN)模擬演講者的嵌入(如詞匯和短語(yǔ)的數(shù)學(xué)表示),遞歸神經(jīng)網(wǎng)絡(luò)是一種機(jī)器學(xué)習(xí)模型,它可以利用內(nèi)部狀態(tài)來(lái)處理輸入序列。每個(gè)演講者都從自己的RNN實(shí)例開(kāi)始,該實(shí)例不斷更新給定新嵌入的RNN狀態(tài),使系統(tǒng)能夠?qū)W習(xí)發(fā)言者共享的高級(jí)知識(shí)。

研究人員在論文中寫(xiě)道:“由于該系統(tǒng)的所有組件都可以在監(jiān)督環(huán)境下學(xué)習(xí),所以在有高質(zhì)量時(shí)間標(biāo)記演講者標(biāo)簽訓(xùn)練數(shù)據(jù)的情況下,它比無(wú)監(jiān)督系統(tǒng)更受青睞。我們的系統(tǒng)受到全面監(jiān)督,能夠從帶有時(shí)間戳的演講者標(biāo)簽例子中學(xué)習(xí)。”

在未來(lái)的工作中,研究團(tuán)隊(duì)計(jì)劃改進(jìn)模型,使其能夠集成上下文信息來(lái)執(zhí)行脫機(jī)解碼,他們希望這將進(jìn)一步減少DER。研究人員還希望能夠直接對(duì)聲學(xué)特征進(jìn)行建模,這樣整個(gè)Speakerdiarization系統(tǒng)就可以進(jìn)行端到端訓(xùn)練。

中傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:

凡本網(wǎng)注明[來(lái)源:中國(guó)傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國(guó)傳動(dòng)網(wǎng)(m.u63ivq3.com)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來(lái)源“中國(guó)傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來(lái)源的稿件,均來(lái)自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來(lái)源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

如涉及作品內(nèi)容、版權(quán)等問(wèn)題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

關(guān)注伺服與運(yùn)動(dòng)控制公眾號(hào)獲取更多資訊

關(guān)注直驅(qū)與傳動(dòng)公眾號(hào)獲取更多資訊

關(guān)注中國(guó)傳動(dòng)網(wǎng)公眾號(hào)獲取更多資訊

最新新聞
查看更多資訊

娓娓工業(yè)

廣州金升陽(yáng)科技有限公司

熱搜詞
  • 運(yùn)動(dòng)控制
  • 伺服系統(tǒng)
  • 機(jī)器視覺(jué)
  • 機(jī)械傳動(dòng)
  • 編碼器
  • 直驅(qū)系統(tǒng)
  • 工業(yè)電源
  • 電力電子
  • 工業(yè)互聯(lián)
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機(jī)界面
  • PLC
  • 電氣聯(lián)接
  • 工業(yè)機(jī)器人
  • 低壓電器
  • 機(jī)柜
回頂部
點(diǎn)贊 0
取消 0