人工智能要崛起,從芯片設(shè)計(jì)開始!

時(shí)間:2017-08-07

來源:網(wǎng)絡(luò)轉(zhuǎn)載

導(dǎo)語(yǔ):作為典型的前瞻性基礎(chǔ)研究領(lǐng)域,人工智能得到了我國(guó)基礎(chǔ)研究最主要的支持渠道——國(guó)家自然科學(xué)基金委的持續(xù)關(guān)注和重視。

作為典型的前瞻性基礎(chǔ)研究領(lǐng)域,人工智能得到了我國(guó)基礎(chǔ)研究最主要的支持渠道——國(guó)家自然科學(xué)基金委的持續(xù)關(guān)注和重視。自然科學(xué)基金較早地做出了前瞻部署,聚焦重點(diǎn)問題,資助了大批探索性研究項(xiàng)目,培養(yǎng)了一批基礎(chǔ)研究隊(duì)伍。

1956年在美國(guó)舉行的達(dá)特茅斯會(huì)議,探討了人工智能的發(fā)展。在這次會(huì)議中,人工智能(AI)的概念被正式提出:“讓機(jī)器能像人那樣認(rèn)知、思考和學(xué)習(xí),即用計(jì)算機(jī)模擬人的智能”。參加這次會(huì)議的科學(xué)家開始在科研領(lǐng)域致力于人工智能的發(fā)展,但受制于計(jì)算機(jī)技術(shù)的水平,當(dāng)時(shí)人工智能的進(jìn)展有限。

在20世紀(jì)60年代,美國(guó)科幻小說家阿西莫夫在《紐約時(shí)報(bào)》開設(shè)專欄,對(duì)人類半個(gè)世紀(jì)后的科技生活進(jìn)行預(yù)測(cè)。他預(yù)言:“到2014年,機(jī)器人有了自己存在的意義:把人類從瑣碎的家務(wù)中解放出來,人們只需頭一天晚上對(duì)機(jī)器做出設(shè)置,第二天早上就可以直接享用現(xiàn)成的美味早餐?!?/p>

我國(guó)計(jì)算機(jī)仿真與計(jì)算機(jī)集成制造專家、中國(guó)工程院院士李伯虎認(rèn)為,人工智能最近60年發(fā)展可以分為三個(gè)階段:20世紀(jì)50年代至70年代,人工智能力圖模擬人類智慧,但是受過分簡(jiǎn)單的算法、匱乏得難以應(yīng)對(duì)不確定環(huán)境的理論以及計(jì)算能力的限制,這一熱潮逐漸冷卻;20世紀(jì)80年代,人工智能的關(guān)鍵應(yīng)用——基于規(guī)則的專家系統(tǒng)得以發(fā)展,但是數(shù)據(jù)較少,難以捕捉專家的隱性知識(shí),加之計(jì)算能力依然有限,使得人工智能不被重視;進(jìn)入20世紀(jì)90年代,神經(jīng)網(wǎng)絡(luò)、深度學(xué)習(xí)等人工智能算法以及大數(shù)據(jù)、云計(jì)算和高性能計(jì)算等信息通信技術(shù)快速發(fā)展,人工智能進(jìn)入新的快速增長(zhǎng)時(shí)期。

李伯虎說:“當(dāng)前,正在發(fā)生重大變革的信息新環(huán)境和人類社會(huì)發(fā)展的新目標(biāo),催生人工智能技術(shù)與應(yīng)用進(jìn)入了一個(gè)新階段。這一次人工智能新高潮的最大特點(diǎn)是企業(yè)引領(lǐng)?!?/p>

確實(shí)是這樣,在國(guó)際上,谷歌、IBM、亞馬遜等各自展開了對(duì)人工智能領(lǐng)域的研究。谷歌的人工智能程序阿爾法圍棋(AlphaGo)在圍棋領(lǐng)域的“人機(jī)大戰(zhàn)”吸引了世界的目光。在我國(guó),阿里巴巴、華為、百度等公司在人工智能方面也各有建樹。比如,在中國(guó),“人臉識(shí)別”這一人工智能技術(shù)已在多家公司的刷臉支付產(chǎn)品中被廣泛應(yīng)用。

人工智能產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟理事長(zhǎng)、中國(guó)工程院院士高文表示,新一輪的人工智能浪潮由企業(yè)帶動(dòng),目前多國(guó)已關(guān)注到人工智能巨大的發(fā)展?jié)摿?,加大了?duì)人工智能研究的資助。

在中國(guó),“人工智能”被寫入我國(guó)“十三五”規(guī)劃綱要。在2016年5月,國(guó)家發(fā)改委、科技部、工信部及中央網(wǎng)信辦四部委聯(lián)合下發(fā)《“互聯(lián)網(wǎng)+”人工智能三年行動(dòng)實(shí)施方案》,要“充分發(fā)揮人工智能技術(shù)創(chuàng)新的引領(lǐng)作用,支撐各行業(yè)領(lǐng)域‘互聯(lián)網(wǎng)+’創(chuàng)業(yè)創(chuàng)新,培育經(jīng)濟(jì)發(fā)展新動(dòng)能”。面向2030年的人工智能規(guī)劃即將出臺(tái),中國(guó)的人工智能研究與開發(fā)將進(jìn)入頂層設(shè)計(jì)后的系統(tǒng)推進(jìn)階段。

中國(guó)工程院院士潘云鶴表示,我國(guó)對(duì)智能城市、智能醫(yī)療、智能交通、智能制造、無人駕駛等領(lǐng)域的研究需求與日俱增,“我國(guó)已在這些領(lǐng)域?qū)崿F(xiàn)了信息化,現(xiàn)在迫切需要智能化”。

人工智能有可能率先實(shí)現(xiàn)從跟跑到領(lǐng)跑

此前中國(guó)工程院根據(jù)人工智能60年的發(fā)展,結(jié)合中國(guó)發(fā)展的社會(huì)需求與信息環(huán)境,提出了人工智能2.0的理念。

中國(guó)工程院高文院士表示,人工智能2.0的一個(gè)鮮明特征是實(shí)現(xiàn)“機(jī)理類腦,性能超腦”的智能感知,進(jìn)而實(shí)現(xiàn)跨媒體的學(xué)習(xí)和推理,比如人工智能AlphaGo就是通過視覺感知獲得“棋感”:“它將圍棋盤面視為圖像,對(duì)16萬(wàn)局人類對(duì)弈進(jìn)行‘深度學(xué)習(xí)’,獲得根據(jù)局面迅速判斷的‘棋感’,并采用強(qiáng)化學(xué)習(xí)方法進(jìn)行自我對(duì)弈3000萬(wàn)盤,尋找對(duì)最后取勝的關(guān)鍵‘妙招’?!蓖ㄟ^這種感知,AlphaGo實(shí)現(xiàn)了符號(hào)主義、連接主義、行為主義和統(tǒng)計(jì)學(xué)習(xí)“四劍合璧”,最終超越人類。

楊衛(wèi)認(rèn)為,在研發(fā)活動(dòng)的全鏈條——從基礎(chǔ)科學(xué)到技術(shù)及產(chǎn)品和市場(chǎng)中,基金委正是源頭供給者。順應(yīng)時(shí)代發(fā)展要求深入探索人工智能,不僅造福于民,更可為國(guó)家在重大研究領(lǐng)域的突破作出貢獻(xiàn)。

此外,為推動(dòng)人工智能研究的拓展與豐富,科學(xué)基金將重點(diǎn)支持通信與電子學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)、自動(dòng)化科學(xué)與技術(shù)等分支學(xué)科之間的交叉研究,通過交叉研究孕育重大突破。

“中國(guó)人工智能的發(fā)展前景閃爍著希望的曙光,有望領(lǐng)跑世界?!睏钚l(wèi)指出,在科技發(fā)展過程中,一個(gè)國(guó)家從跟跑到領(lǐng)跑的歷史性跨越既是華麗的,又是艱難的。它需要高瞻遠(yuǎn)矚地把握創(chuàng)新規(guī)律,認(rèn)識(shí)到領(lǐng)跑特有的表現(xiàn)形式,并審時(shí)度勢(shì)選擇正確的領(lǐng)跑方向,而人工智能作為人機(jī)網(wǎng)共融的重要組成部分,和智慧數(shù)據(jù)、新物理、合成生命、量子躍遷一道,有可能成為我國(guó)科技率先實(shí)現(xiàn)從跟跑到領(lǐng)跑的跨越的五個(gè)重要領(lǐng)域。

人工智能芯片設(shè)計(jì)

移動(dòng)端的AI芯片在設(shè)計(jì)思路上有著本質(zhì)的區(qū)別。首先,必須保證功耗控制在一定范圍內(nèi),換言之,必須保證很高的計(jì)算能效;為了達(dá)到這個(gè)目標(biāo),移動(dòng)端AI芯片的性能必然有所損失,允許一些計(jì)算精度損失,因此可以使用一些定點(diǎn)數(shù)運(yùn)算以及網(wǎng)絡(luò)壓縮的辦法來加速運(yùn)算。

下面,將分別從服務(wù)器端芯片進(jìn)行介紹。有的廠商同時(shí)具有這兩類產(chǎn)品,則不做嚴(yán)格區(qū)分。

Nvidia

在云端服務(wù)器這個(gè)領(lǐng)域,Nvidia的GPU已經(jīng)成為服務(wù)器不可或缺的一部分,稱其為領(lǐng)跑者毫不為過。有報(bào)告顯示,世界上目前約有3000多家AI初創(chuàng)公司,大部分都采用了Nvidia提供的硬件平臺(tái)。

資本市場(chǎng)對(duì)此給出了熱烈的回應(yīng):在過去的一年中,曾經(jīng)以游戲芯片見長(zhǎng)的Nvidia股價(jià)從十幾年的穩(wěn)居30美元迅速飆升至120美元。2017年2月10日,英偉達(dá)發(fā)布2016年第四季度的財(cái)報(bào)顯示,其營(yíng)收同比增長(zhǎng)55%,凈利潤(rùn)達(dá)到了6.55億美元,同比增長(zhǎng)216%。

Intel

作為PC時(shí)代的絕對(duì)霸主,Intel已經(jīng)錯(cuò)過了移動(dòng)互聯(lián)網(wǎng)時(shí)代,在已經(jīng)到來的AI時(shí)代,也失掉了先機(jī),但它并沒有放棄,而是積極布局,準(zhǔn)備逆襲。在云端,收購(gòu)Altera之后推出了基于FPGA的專用深度學(xué)習(xí)加速卡,可以在云端使用;另外,收購(gòu)Nervana,目標(biāo)也是在云端。在移動(dòng)端,則是收購(gòu)了Movidius。下面先對(duì)Nervana進(jìn)行介紹,對(duì)Movidius的介紹放在后面移動(dòng)端。

Nervana創(chuàng)立于2014年,位于圣地亞哥的初創(chuàng)公司NervanaSystems已經(jīng)從20家不同的投資機(jī)構(gòu)那里獲得了2440萬(wàn)美元資金,而其中一家是十分受人尊敬的德豐杰風(fēng)險(xiǎn)投資公司(DraperFisherJurvetson,DFJ)。

TheNervanaEngine(將于2017年問世)是一個(gè)為深度學(xué)習(xí)專門定做和優(yōu)化的ASIC芯片。這個(gè)方案的實(shí)現(xiàn)得益于一項(xiàng)叫做HighBandwidthMemory的新型內(nèi)存技術(shù),同時(shí)擁有高容量和高速度,提供32GB的片上儲(chǔ)存和8TB每秒的內(nèi)存訪問速度。該公司目前提供一個(gè)人工智能服務(wù)“inthecloud”,他們聲稱這是世界上最快的且目前已被金融服務(wù)機(jī)構(gòu)、醫(yī)療保健提供者和政府機(jī)構(gòu)所使用的服務(wù),他們的新型芯片將會(huì)保證Nervana云平臺(tái)在未來的幾年內(nèi)仍保持最快的速度。

IBM

IBM很早以前就發(fā)布過watson,早就投入了很多的實(shí)際應(yīng)用中去。除此之外,還啟動(dòng)了對(duì)類人腦芯片的研發(fā),那就是TrueNorth。

TrueNorth是IBM參與DARPA的研究項(xiàng)目SyNapse的最新成果。SyNapse全稱是SystemsofNeuromorphicAdapTIvePlasTIcScalableElectronics(自適應(yīng)可塑可伸縮電子神經(jīng)系統(tǒng),而SyNapse正好是突觸的意思),其終極目標(biāo)是開發(fā)出打破馮?諾依曼體系的硬件。

這種芯片把數(shù)字處理器當(dāng)作神經(jīng)元,把內(nèi)存作為突觸,跟傳統(tǒng)馮諾依曼結(jié)構(gòu)不一樣,它的內(nèi)存、CPU和通信部件是完全集成在一起。因此信息的處理完全在本地進(jìn)行,而且由于本地處理的數(shù)據(jù)量并不大,傳統(tǒng)計(jì)算機(jī)內(nèi)存與CPU之間的瓶頸不復(fù)存在了。同時(shí)神經(jīng)元之間可以方便快捷地相互溝通,只要接收到其他神經(jīng)元發(fā)過來的脈沖(動(dòng)作電位),這些神經(jīng)元就會(huì)同時(shí)做動(dòng)作。

2011年的時(shí)候,IBM首先推出了單核含256個(gè)神經(jīng)元,256&TImes;256個(gè)突觸和256個(gè)軸突的芯片原型。當(dāng)時(shí)的原型已經(jīng)可以處理像玩Pong游戲這樣復(fù)雜的任務(wù)。不過相對(duì)來說還是比較簡(jiǎn)單,從規(guī)模上來說,這樣的單核腦容量?jī)H相當(dāng)于蟲腦的水平。

不過,經(jīng)過3年的努力,IBM終于在復(fù)雜性和使用性方面取得了突破。4096個(gè)內(nèi)核,100萬(wàn)個(gè)“神經(jīng)元”、2.56億個(gè)“突觸”集成在直徑只有幾厘米的方寸(是2011年原型大小的1/16)之間,而且能耗只有不到70毫瓦。

這樣的芯片能夠做什么事情呢?IBM研究小組曾經(jīng)利用做過DARPA的NeoVision2Tower數(shù)據(jù)集做過演示。它能夠?qū)崟r(shí)識(shí)別出用30幀每秒的正常速度拍攝自斯坦福大學(xué)胡佛塔的十字路口視頻中的人、自行車、公交車、卡車等,準(zhǔn)確率達(dá)到了80%。相比之下,一臺(tái)筆記本編程完成同樣的任務(wù)用時(shí)要慢100倍,能耗卻是IBM芯片的1萬(wàn)倍。

寒武紀(jì)

Google將TPU加速器芯片嵌入電路板中,利用已有的硬盤PCI-E接口接入數(shù)據(jù)中心服務(wù)器中。

終于有中國(guó)公司了,中文名“寒武紀(jì)”,是北京中科寒武紀(jì)科技有限公司的簡(jiǎn)稱。這家公司有中科院背景,面向深度學(xué)習(xí)等人工智能關(guān)鍵技術(shù)進(jìn)行專用芯片的研發(fā),可用于云服務(wù)器和智能終端上的圖像識(shí)別、語(yǔ)音識(shí)別、人臉識(shí)別等應(yīng)用。

寒武紀(jì)深度學(xué)習(xí)處理器采用的指令集DianNaoYu由中國(guó)科學(xué)院計(jì)算技術(shù)研究所陳云霽、陳天石課題組提出。模擬實(shí)驗(yàn)表明,采用DianNaoYu指令集的寒武紀(jì)深度學(xué)習(xí)處理器相對(duì)于x86指令集的CPU有兩個(gè)數(shù)量級(jí)的性能提升。

目前,寒武紀(jì)系列已包含三種原型處理器結(jié)構(gòu):

寒武紀(jì)1號(hào)(英文名DianNao,面向神經(jīng)網(wǎng)絡(luò)的原型處理器結(jié)構(gòu));

寒武紀(jì)2號(hào)(英文名DaDianNao,面向大規(guī)模神經(jīng)網(wǎng)絡(luò));

寒武紀(jì)3號(hào)(英文名PuDianNao,面向多種機(jī)器學(xué)習(xí)算法)。

2016年推出的寒武紀(jì)1A處理器(Cambricon-1A)是世界首款商用深度學(xué)習(xí)專用處理器,面向智能手機(jī)、安防監(jiān)控、可穿戴設(shè)備、無人機(jī)和智能駕駛等各類終端設(shè)備

CEVA

CEVA是專注于DSP的IP供應(yīng)商,擁有為數(shù)眾多的產(chǎn)品線。其中,圖像和計(jì)算機(jī)視覺DSP產(chǎn)品CEVA-XM4是第一個(gè)支持深度學(xué)習(xí)的可編程DSP,而其發(fā)布的新一代型號(hào)CEVA-XM6,具有更優(yōu)的性能、更強(qiáng)大的計(jì)算能力,以及更低的耗能。

XM6的兩大新硬件功能,將幫助大多數(shù)圖像處理和機(jī)器學(xué)習(xí)算法。第一個(gè)是分散-聚集,或者說是閱讀一個(gè)周期中,L1緩存到向量寄存器中的32地址值的能力。CDNN2編譯工具識(shí)別串行代碼加載,并實(shí)現(xiàn)矢量化來允許這一功能,當(dāng)所需的數(shù)據(jù)通過記憶結(jié)構(gòu)分布時(shí),分散-聚集提高了數(shù)據(jù)加載時(shí)間。由于XM6是可配置的IP,L1數(shù)據(jù)儲(chǔ)存的大小/相關(guān)性在硅設(shè)計(jì)水平是可調(diào)節(jié)的,CEVA表示,這項(xiàng)功能對(duì)于任意尺寸的L1都有效。此級(jí)用于處理的向量寄存器是寬度為8的VLIW實(shí)現(xiàn)器,這樣的配置才能滿足要求。

第二功能稱為“滑動(dòng)-窗口”數(shù)據(jù)處理,這項(xiàng)視覺處理的特定技術(shù)已被CEVA申請(qǐng)專利。有許多方法可以處理過程或智能中的圖像,通常算法將立刻使用平臺(tái)所需一塊或大片像素。對(duì)于智能部分,這些塊的數(shù)量將重疊,導(dǎo)致不同區(qū)域的圖像被不同的計(jì)算區(qū)域重用。CEVA的方法是保留這些數(shù)據(jù),從而使下一步分析所需信息量更少。

CEVA指出,智能手機(jī)、汽車、安全和商業(yè)應(yīng)用,如無人機(jī)、自動(dòng)化將是主要目標(biāo)

ARM

ARM剛推出全新芯片架構(gòu)DynamIQ,通過這項(xiàng)技術(shù),AI的性能有望在未來三到五年內(nèi)提升50倍。

ARM的新CPU架構(gòu)將會(huì)通過為不同部分配置軟件的方式將多個(gè)處理核心集聚在一起,這其中包括一個(gè)專門為AI算法設(shè)計(jì)的處理器。芯片廠商將可以為新處理器配置最多8個(gè)核心。同時(shí)為了能讓主流AI在自己的處理器上更好地運(yùn)行,ARM還將放出一系列軟件庫(kù)。

DynamIQ是在ARM上一代革新架構(gòu)big.LITTLE基礎(chǔ)上的一次演進(jìn),這種架構(gòu)能夠?qū)ν贿\(yùn)算設(shè)備中的大小兩個(gè)核進(jìn)行適當(dāng)配置,以減少電池消耗。目前big.LITTLE架構(gòu)已經(jīng)被應(yīng)用到了幾乎所有智能手機(jī)的芯片上,包括用于安卓系統(tǒng)的高通驍龍?zhí)幚砥饕约疤O果最新一代的A10芯片。

接下來ARM推出的每一款Cortex-A系列芯片都將采用這種新技術(shù)。ARM稱,與在現(xiàn)有芯片架構(gòu)上開發(fā)出的處理器(即Cortex-A73)相比,基于DynamIQ架構(gòu)開發(fā)的全新處理器有望在三到五年內(nèi)使人工智能的表現(xiàn)增強(qiáng)50倍。

人工智能時(shí)代已經(jīng)來臨,在這個(gè)史無前例的巨大浪潮面前,有哪些公司能脫穎而出,成為新一代弄潮兒?讓我們拭目以待。

更多資訊請(qǐng)關(guān)注電力電子頻道

中傳動(dòng)網(wǎng)版權(quán)與免責(zé)聲明:

凡本網(wǎng)注明[來源:中國(guó)傳動(dòng)網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國(guó)傳動(dòng)網(wǎng)(m.u63ivq3.com)獨(dú)家所有。如需轉(zhuǎn)載請(qǐng)與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個(gè)人轉(zhuǎn)載使用時(shí)須注明來源“中國(guó)傳動(dòng)網(wǎng)”,違反者本網(wǎng)將追究其法律責(zé)任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請(qǐng)保留稿件來源及作者,禁止擅自篡改,違者自負(fù)版權(quán)法律責(zé)任。

如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

關(guān)注伺服與運(yùn)動(dòng)控制公眾號(hào)獲取更多資訊

關(guān)注直驅(qū)與傳動(dòng)公眾號(hào)獲取更多資訊

關(guān)注中國(guó)傳動(dòng)網(wǎng)公眾號(hào)獲取更多資訊

最新新聞
查看更多資訊

娓娓工業(yè)

廣州金升陽(yáng)科技有限公司

熱搜詞
  • 運(yùn)動(dòng)控制
  • 伺服系統(tǒng)
  • 機(jī)器視覺
  • 機(jī)械傳動(dòng)
  • 編碼器
  • 直驅(qū)系統(tǒng)
  • 工業(yè)電源
  • 電力電子
  • 工業(yè)互聯(lián)
  • 高壓變頻器
  • 中低壓變頻器
  • 傳感器
  • 人機(jī)界面
  • PLC
  • 電氣聯(lián)接
  • 工業(yè)機(jī)器人
  • 低壓電器
  • 機(jī)柜
回頂部
點(diǎn)贊 0
取消 0